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Oscillations in thin nematic layers 

by L. V. MIRANTSEV 
Leningrad Branch of Mechanical Engineering Research Institute, 
Academy of Sciences of the U.S.S.R., Leningrad 199178, U.S.S.R. 

(Received 23 April 1991; accepted 29 August 1991) 

In the present paper a thin nematic liquid crystal layer between two identical 
boundary surfaces (solid walls or free surfaces in the case of a freely suspended film) 
is considered. In a mean field approximation it is shown that the interference 
between the boundary surface-induced smectic density waves results in oscillations 
of the free energy of the nematic layer and disjoining pressure acting on the 
boundary surfaces. Theoretical dependence of disjoining pressure on the nematic 
layer thickness is in qualitative agreement with experiment. Also we have 
considered a thin film of polar nematic in which in addition to an ordinary 
monolayer smectic A phase (SAJ with the layer thickness d equal to the molecular 
length 1 the partial bilayer smectic A phase (SAd) occurs. It is shown that the 
variation of the distance between the boundary surfaces can result in the oscillatory 
SA,-A,, phase transitions in this nematic film 

1. Introduction 
It is known that the surface has an effect on the structure of liquids and liquid 

crystals and that this effect propogates for some distance into the liquid. This results in 
the appearance of surface layers with properties different from those of the bulk phase 
of liquid. For example, the liquid-solid substance interface not only enhances the 
orientational ordering in nematics and imposes some orientational order on the 
isotropic phase of liquids having a nematic phase C1-61 but also induces orientational 
ordering in non-mesogeneous liquids [7]. Furthermore, both the nematic free surface 
and the nematic-solid substrate interface have an effect on the positional molecular 
order in liquids that leads to the appearance of a layered smectic A structure [l, 8-13]. 

The thin layer of liquid or nematic between two identical boundary surfaces (solid 
walls or free surfaces in the case of a freely suspended film) is particularly interesting. 
When two such surfaces are sufficiently close together then the interference between 
liquid surface layers takes place which results in the appearance of extra phenomena. 
These phenomena have been clearly revealed by Horn et al. [ 11 from measurements of 
the forces between two molecularly smooth surfaces of mica separated by the 
nematogen 4-n-pentyl-4’-cyanobiphenyl (5CB) in both the planar and homeotropic 
orientations. It has been found that there is a short-range force which oscillates as a 
function of the nematic film thickness between attraction and repulsion and the period 
of oscillation is equal to the molecular length 1 and molecular diameter a at the 
homeotropic and planar orientations, respectively. Also Horn et al. [ 11 have 
established that the amplitude of oscillations decays exponentially with the distance 
between the two mica surfaces. It should be added that similar oscillations with a 
period equal to the molecular size have been observed in isotropic liquids composed of 
more or less spherical molecules [14,15]. The qualitative explanation of such a 
phenomenon was also given by Horn et al. [l]. They attributed the oscillations of the 
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422 L. V. Mirantsev 

force between the two mica surfaces to the solid wall-induced smectic ordering of 
molecules in the liquid crystal layer. As for its theoretical description, up to now this has 
been based on either computer simulation methods [16] or the analysis of model 
systems quite different from liquids and liquid crystals [17]. 

We propose here a simple description of the oscillations in the thermodynamic 
properties of thin nematic layers between two identical boundary surfaces. In a mean 
field approximation it is shown that the interference between boundary surface- 
induced smectic density waves results in oscillations of the free energy of the liquid 
crystal layer and disjoining pressure acting on the boundary surfaces. Theoretical 
dependence of the disjoining pressure on the nematic film thickness is in qualitative 
agreement with experiment [l]. We also consider a thin film of a polar nematic in which 
in addition to the ordinary monolayer smectic A phase (SAJ with the layer thickness 
d equal to the molecular length 1 the partial bilayer smectic A phase (SAd) with l < d  < 21 
occurs. It is shown that the variation of the distance between the boundary surfaces can 
result in oscillatory SA,-S,, phase transitions in this nematic film. 

2. Oscillations in thin nematic layers as a result of interference between boundary 
surfaces-induced smectic density waves 

We consider the nematic layer between two identical boundary surfaces (solid walls 
or free surfaces in the case of a freely suspended film). For simplicity we assume that the 
orientational order in the liquid crystal is ideal (ie. the long axes of all molecules are 
oriented parallel to the director n). Furthermore, the director n is assumed to be aligned 
along the z axis which is normal to the boundary surfaces (i.e. the nematic layer has a 
homeotropic orientation). The layer thickness is equal to 2L (z =O and z = 2L at the first 
and second boundary surfaces, respectively). 

When the layer under consideration is infinite (2L+ 00) and homogeneous and we 
do not take into account the interaction between the mesogenic molecules and the 
boundary surfaces then its properties in a mean field approximation are completely 
described by the single particle distribution function [18] 

p(z) = 1 + 2a, cos (27cz/l), (1) 
where al is the coordinate independent monolayer smectic order parameter (for the 
present only a classic monolayer smectic A phase (SA,) is assumed to be possible in the 
sample). The free energy density in such a layer is given by the Landau expansion: 

fo(a,)= fN+A,a: + c,a:+. . . , (2) 
wheref, is the free energy density in the nematic phase. A ,  =a,(T- T,) a, =constant, 
Tl is the SA,-N transition temperature in an infinite and homogeneous liquid crystal, 
C1 is constant. When T> TI, then A ,  > O  and the nematic phase is observed (al =O). 
When T< TI, then A ,  < 0 and the smectic A phase is energetically more favourable than 
the nematic phase and a1 ZO. Since we consider the nematic layer then TI < T and 
A ,  >D. 

Now let us assume that the layer is sufficiently thick (2L- 00) and take into account 
the interaction between the mesogenic molecules and the boundary surfaces. In this 
case we can neglect the mutual influence of the boundary surfaces and consider 
separately each half of the layer adjacent to one of the boundary surfaces. For simplicity 
we suppose that the molecules interact with the boundary surfaces due to short range 
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Oscillations in thin nematic alloys 423 

attractive forces and the corresponding interaction potentials for first (z = 0) and 
second (z = 2L) boundary surfaces, respectively can be represented as 

G l ( 4  = -Go@), (3) 
GJz) = - GO6(z - 2L), (4) 

where Go is a constant and 6(z) is the Dirac function. If we assume that each boundary 
surface induces its own smectic A structure (i.e. density wave) which decays completely 
with propagation into the bulk of the layer then the corresponding single particle 
distribution functions for the first and second halves of the layer are given, respectively, 

( 5 )  
by 

(6) 

pl(z) = 1 + 2a(,“(z) cos (27cz/1), 

&(Z) = 1 + 242’(z) cos ( 2 4 z  - 2L)/1), 

where both oi1)(z) and oi2)(z) are the corresponding z coordinate dependent density 
wave amplitudes (the sample is assumed to be homogeneous in the xy plane and the xy 
dependence of both nil) and oi2) can be neglected). Then the functional (2) for the 
density of the free energy in the layer can be rewritten as [19] 

where K ,  is analogous to an elastic constant. If the temperature of the layer is much 
higher than the SA,-N transition temperature in an infinite and homogeneous sample 
then the term - of(z) in equation (7) can be neglected. In this case the minimization of 
the functional (7) with respect to ol(z) leads to the simple differential equation 

d201(z) 1 
dz2 t: o1(z) = 0 

where gl  =(K,/A,)1’2 is the longitudinal correlation length of the SA1 phase fluctu- 
ations in the ilematic phase. The solutions of equation (8) for the first and second halves 
of the layer are 

4Y.4 = ol0 exp ( - z/tl), 

ai2)(z) = ol0 exp ((z- 2L)/t1). 

(9) 

(10) 
For a thick (L/[,+co) nematic layer the interaction energy between the mesogenic 
molecules and the boundary surfaces per unit area is 

and the total free energy per unit area is 

where F ,  is the total free energy per unit area in the nematic phase and n is the average 
number of molecules per unit volume. The minimization of the total free energy with 
respect to ol0 leads to the following expressions for ol0 and FSAl 

~ 1 o = 9 / 2 ,  (13) 

(14) F S A , = F N - * t l A 1 g  2 7 
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424 L. V. Mirantsev 

From this equation we can conclude that the existence of the smectic A structures at the 
boundary surfaces of a thick layer is always energetically favourable and this result is 
independent of the layer thickness. 

Finally, let us consider a thin nematic layer between the boundary surfaces when the 
magnitude of the ratio L/5, is finite and we cannot neglect the mutual influence of the 
boundary surfaces (i.e. we cannot consider separately each half of the layer adjacent to 
one of the boundary surfaces). In this case the solution of equation (8) must be the 
superposition of both solutions (9) and (10) and the smectic density wave in the layer 
must be the superposition of two boundary surface-induced density waves. Therefore, 
we take the expression 

Ol(Z) = c1oCexp (- 451) + exp ((z - 2z4Ytl)l (15) 

satisfying the condition of a minimum for al(z) at the middle of the layer 

as the solution to equation (8) and represent the single particle distribution function as 

p(z) = 1 + 2a10 exp ( - z/tl) cos (2nzlI - $ 1) 

+2aloexp((z-2L)/t,)cos(2x(z-2L)/I-$,) (17) 
where both t,hl and $, are constant phase shifts introduced to take into account the 
mutual influence of two boundary surface-induced density waves. It should be noted 
that the normalization of the one particle distribution function (17) is not necessary 
because of the space between the two boundary surfaces is assumed to be open 
(molecules can come into it and leave it). Now the energy of interaction between the 
mesogenic molecules and the boundary surfaces per unit area is given by 

(Fsurf)s*l = -2~10nGoCcos$1 +exp(-2L/t,)cos(4xL/I-$,) 
+ cos $, + exp (- 2L/C1) cos (4nz4/1+ $,)I. (18) 

Minimization of this expression with respect to both $1 and $2 leads to 

I- exp ( - 2L/5,) sin (4nL/I) 
1 + exp ( - 2L/5,) cos (4nL/l) 

$1= -$,=tn-' 

Then the total free energy per unit square is 
P2L 

After minimization of this expression with respect to al0 we obtain 
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Oscillations in thin nematic alloys 425 

It is seen from these equations that both the surface smectic order parameter gl0 and 
the free energy of the layer are oscillatory functions of the distance 2L between the two 
boundary surfaces. The qualitative explanation of the results obtained can be as 
follows. Both the smectic order parameter and the free energy of the layer are 
determined by the interaction between the mesogenic molecules and the boundary 
surfaces. When the interference between the boundary surface-induced smectic density 
waves is constructive at these surfaces then such an interaction is enhanced. When this 
interference is destructive, then the interaction between the molecules and the 
boundary surfaces grows weak. Since the result of the interference between two 
coherent waves oscillates with the variation of the distance between their sources (the 
boundary surfaces) then both the smectic order parameter and the free energy of the 
layer must be oscillatory functions of the layer thickness 2L. 

One of the most important characteristics of the system under consideration is the 
disjoining pressure acting on the boundary surfaces. The extra disjoining pressure due 
to the boundary surface-induced smectic A structure in the nematic film is determined 
by 

Since FsAI-F, is an oscillatory function of the layer thickness 2L then the extra 
disjoining pressure must oscillate with the variation of the layer thickness. The results 
of numerical calculations for the extra disjoining pressure via the equations (19), (22) 
and (23) (the longitudinal correlation length is assumed to be equal to the molecular 
length 1 )  is shown in figure 1. It is seen that the period of the disjoining pressure 
oscillations is equal to the period of the smectic density wave 1 and the amplitude of the 
oscillations decays exponentially with the nematic film thickness 2L. The characteristic 

2 

A P/Ag2 

0 

-2 

0 1 2 3 
2VI 

Figure 1. The dependence of the disjoining pressure on the distance between the boundary 
surfaces. rl  = 1. 
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426 L. V. Mirantsev 

decay length is equal to the longitudinal correlation length of the S,, phase fluctuations 
in the nematic phase. These theoretical results are in agreement with experiment. In 
addition the positions of the maxima and minima of the theoretical curve in figure 1 
coincide qualitatively with experiment [l]. It should be noted that as we approach the 
S,,-N transition temperature TI in an infinite and homogeneous sample the 
longitudinal correlation length --t co and the oscillations of the disjoining pressure 
can be observed at sufficiently large distances between the boundary surfaces. This 
result is also in agreement with experiment [l] in which the oscillations of the 
disjoining pressure were observed in the smectic A phase of 4-n-octyl-4-cyanobiphenyl 
(8CB) at a distance between the boundary surfaces equal to about 2pm which 
corresponds to the thickness of more than 600 smectic layers. 

3. Oscillatory S,,-SAd phase transitions in thin polar nematic layers 
In addition to the ordinary monolayer smectic A phase (S , , )  the partial bilayer 

smectic A phases (SAd) with a layer thickness 1 < d < 21 exist in some strongly polar 
liquid crystals consisting of molecules having end groups (CN or NO,) with large 
permanent dipole moments ( ~4 D) [20-221. In such liquid crystals the monolayer and 
partial bilayer smectic A phases are either separated by the reentrant nematic phase or 
the direct A,,-SA, phase transition is observed [20,22]. 

A microscopic model of the S,, phase has been proposed by de Jeu and Longa [23]. 
According to this model the SA, phase is composed not only of individual polar 
molecules (monomers) but also their pairs (dimers) with a zero total electric dipole 
moment. However de Jeu and Longa’s theory is in contradiction with measurements of 
the dielectric anisotropy of polar liquid crystals [24]. Dielectric studies of some polar 
systems [25] show the existence of long range antiferroelectric order in the SAd phase. 
Therefore, it should be reasonable to extend de Jeu and Longa’s model for the bilayer 
smectic A phase (SAJ with long range antiferroelectric order [26] to the S,, phase. 
Then the SAd phase can be represented as the smectic A structure shown in figure 2. It is 
seen that each layer of this structure consists of two macroscopic sublayers with 
mutually opposite alignments of the molecular dipoles and the smectic layer thickness 
d satisfies the condition 1 < d  <21. In a mean field approximation such smectic A 
structure in polar liquid crystals with perfect orientational order can be described by 
the single particle distribution function 

p(z, S) = 1 + 20,s cos (27tz/d), (24) 

Figure 2. The partial bilayer smectic A phase (AAd) with long range antiferroelectric order in a 
polar liquid crystal. (I <d < 21). 
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Oscillations in thin nematic alloys 427 

where a, is the partial bilayer smectic A order parameter and s is the variable defining 
the molecular orientation (s= + 1 for the polar molecules with the dipole moment 
aligned parallel to the director (up) and s = - 1 for the polar molecules aligned in the 
opposite direction (down)). A Landau expansion for the free energy density in the 
SA, phase can be obtained directly from equation (7) if the following replacements are 
made: 

a,(z)-,a,(z), A,- ,A,=a,(T-  Tz), c,-,c,, Kl-+K, 

where T, is the SA,-N transition temperature in an infinite and homogeneous liquid 
crystal sample. 

Now we consider the interaction between the polar liquid crystal molecules and the 
boundary surfaces. We must take into account the fact that some interfaces such as the 
free surface not only impose a homeotropic orientation but also induce polar ordering 
of these molecules. For example, in the first surface layer the polar molecular heads are 
aligned into the liquid crystal bulk and the aliphatic tails towards the free surface. The 
next layer has the opposite orientation and so on. Thus the interface can induce not 
only the ordinary monolayer S,, phase but also the smectic A structure with long range 
antiferroelectric order, such as the S,, phase. A possibility of the polar ordering was 
first discussed by Parsons [27]. In this paper the interaction energy between the polar 
mesogenic molecules and surface due to the polar ordering is supposed to be - - (n * v )  
where v is the unit vector normal to the boundary surface. When perfect orientational 
order takes place in polar liquid crystals and we take into account the boundary 
surface-induced polar ordering then the interaction potentials between the molecules 
and first and second boundary surfaces, respectively, can be written as 

G,(z, S) = - Go6(z) - SG ,6(z), (25) 

G~(z,s)= - G&z-~L)+sG,G(z-~L). (26) 
Here we suppose that the polar ordering is due to short range forces. 

Following the development in the previous section first we consider a sufficiently 
thick polar nematic layer (21 -, co) between two independent boundary surfaces. Each 
boundary surface induces its own SAd phase which decays completely with the 
propagation into the bulk of the liquid crystal sample. Then the corresponding single 
particle distribution functions for this SAd phase can be represented as 

(27) pl(z, s)= 1 + 2azo exp (- z/tz)s cos (27cz/d), 

pz(z, s) = 1 - 2aZ0 exp ((z - 2L)/tz)s cos (2742 - 2L)/d), (28) 
where 5 ,  = (Kz/A2)1/2 is the longitudinal correlation length for the S,, phase 
fluctuations in the nematic phase. Here the exponential decay of the partial bilayer 
smectic order parameters results from the Euler-Lagrange equation which is 
completely equivalent to equation (8) when the temperature of the layer is much higher 
than the SA,-N transition temperature in an infinite and homogeneous sample. 

Finally, if we proceed to consider a polar nematic layer of finite thickness ( L / t 2  is 
the finite value) when we cannot neglect the mutual influence of the boundary surfaces 
then by analogy with the previous section the expression 

a&) = a,oCexP (- 4 t Z )  + exp ((z - 2J5)/5,)1 (29) 
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428 L. V. Mirantsev 

should be taken as the solution of the Euler-Lagrange equation for 02(z) and a single 
particle distribution function describing the S,, phase can be represented as 

p(z, s) = 1 + 202, exp ( -z/t2)s cos (2nz/d - $;) 

- 2a2, exp ((z - 2L)/<,)s cos (2n(z - 2L)/d- $:). (30) 
Then the contribution of the interaction between polar mesogenic molecules and the 
boundary surfaces to the total free energy is given by 

-2o,,nG,[cos $; -exp(-2L/t2)cos(4nL/d-$;)+cos11/~ 

-exp( -2L/t2)cos(4aL/d+ $31. 
Minimization of this expression with respect to both $: and leads to 

exp (- 2L/t2) sin (4aLld) 
1 - exp ( - 2L/t2) cos (4nLld) 

$;=-$I:= -tn-' 

Then the total free energy of the polar layer is determined by 
P 2 L  

-oz0g1[cos $: -exp(-2L/t2)cos(4aL/d-$:)]}, 
where 

g1 =2nGl/t,A,. 

After the minimization of this expression with respect to oz0 we obtain 

02,=$g1[cos $: -exp(-2L/~,)cos(4nL/d-$~)][l -exp(-4L/t2)]-l, (34) 

(FSA~ - FN)/(tZAZ) = -$g2[COS $: -exp (-2LltZ) cos (471L/d- 11/:)12 
x [1-e~p(-4L[,)]-~. (35) 

Thus the free energy of the boundary surface-induced SAd phase in the polar liquid 
crystal layer is also an oscillatory function of the distance 2L between the two boundary 
surfaces. 

If in the polar liquid crystal both the monolayer (S,,) and partial bilayer (SAd) 
smectic A phases can exist then the boundary surfaces can induce both these smectic A 
phases in a thin nematic film. Since the free energies of these smectic A phases are 
oscillatory functions of the film thickness 2L (see expressions (22) and (35)) then the S,, 
phase is energetically more favourable at certain values of this thickness whereas other 
values of 2L correspond to the occurrence of the SAd phase. Thus varying the distance 
between two boundary surfaces we can obtain an alternation of the SAl and SAd phases, 
i.e. we observe oscillatory SA,-SAd phase transitions. The points of these phase 
transitions determined from the condition Fs =FSAd can be detected via the sharp 
discontinuities of the disjoining pressure acting on the boundary surfaces. This 
statement is illustrated in figure 3 in which the corresponding dependence of the 
disjoining pressure on the distance between the boundary surfaces calculated from 

and d = 151). It is seen that in this case the disjoining pressure is not a simple oscillatory 

1. 

equations (22), (23) and (35) is shown (for simplicity we set A, =A,, tl = tz = 1, g=g  1 
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0 1 2 3 
2VI 

Figure 3. The layer thickness dependence of the disjoining pressure acting on the boundary 
surfaces of a polar nematic, A , = &  t1=c2=1, g=gl, d=151. 

function with a single oscillation period. It consists of the pieces of two different 
oscillatory functions (with the oscillation periods equal to 1 and d =  1.51) and we can 
observe sharp discontinuities at the points of connections of these pieces (the SA,-SAd 
transition points). The magnitude of the discontinuities decays exponentially with the 
distance between the boundary surfaces. It should be added that oscillatory SA,-SA, 
phase transitions can also be detected via calorimetric and dielectric measurements. 

Finally, we wish to note that the well-known polar mesogenic compound 4-n- 
octyloxybenzoyloxy-4'-cyanostilbene (T8) seems to be a good candidate for the 
experimental observation of such phenomena because the fluctuations of both the S,, 
and SAd phases coexist simultaneously in its reentrant nematic phase [28]. 
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